{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "```{thebe-init}\n", "---\n", "thebe: true\n", "---\n", "```" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Exemplo de Aplicação: Técnica do Valor Agregado na Construção Civil\n", "\n", "A Técnica do Valor Agregado (**Earned Value Management - EVM**) é uma abordagem utilizada no gerenciamento de projetos para monitorar custos e prazos.\n", "\n", "## Introdução\n", "\n", "### Principais Métricas\n", "- **Planned Value (PV)**: O valor planejado até uma data específica.\n", "- **Earned Value (EV)**: O valor agregado com base no progresso real.\n", "- **Actual Cost (AC)**: O custo real incorrido até o momento.\n", "\n", "### Indicadores de Desempenho\n", "- **Cost Variance (CV)**: Diferença entre EV e AC. (CV = EV - AC).\n", "- **Schedule Variance (SV)**: Diferença entre EV e PV. (SV = EV - PV).\n", "- **Cost Performance Index (CPI)**: Eficiência de custo (CPI = EV / AC).\n", "- **Schedule Performance Index (SPI)**: Eficiência de cronograma (SPI = EV / PV)." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Cenário do Projeto\n", "Este exemplo representa um projeto de construção civil com cinco etapas principais:\n", "1. Fundações\n", "2. Estrutura\n", "3. Instalações\n", "4. Acabamento\n", "5. Entrega\n" ] }, { "cell_type": "code", "execution_count": 5, "id": "c7a024c5", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
EtapaCusto PlanejadoValor AgregadoCusto RealCVSVCPISPI
0Fundações500005000055000-500000.9090911.000000
1Estrutura1500001450001400005000-50001.0357140.966667
2Instalações10000095000120000-25000-50000.7916670.950000
3Acabamento800008000075000500001.0666671.000000
4Entrega200002000025000-500000.8000001.000000
\n", "
" ], "text/plain": [ " Etapa Custo Planejado Valor Agregado Custo Real CV SV \\\n", "0 Fundações 50000 50000 55000 -5000 0 \n", "1 Estrutura 150000 145000 140000 5000 -5000 \n", "2 Instalações 100000 95000 120000 -25000 -5000 \n", "3 Acabamento 80000 80000 75000 5000 0 \n", "4 Entrega 20000 20000 25000 -5000 0 \n", "\n", " CPI SPI \n", "0 0.909091 1.000000 \n", "1 1.035714 0.966667 \n", "2 0.791667 0.950000 \n", "3 1.066667 1.000000 \n", "4 0.800000 1.000000 " ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Importação de bibliotecas\n", "import pandas as pd\n", "import matplotlib.pyplot as plt\n", "import io\n", "\n", "# Leitura dos dados do projeto\n", "#df = pd.read_csv('../data/dados_projeto.csv')\n", "# Dados CSV\n", "import io\n", "\n", "# Dados CSV\n", "data = \"\"\"Etapa,Custo Planejado,Valor Agregado,Custo Real\n", "Fundações,50000,50000,55000\n", "Estrutura,150000,145000,140000\n", "Instalações,100000,95000,120000\n", "Acabamento,80000,80000,75000\n", "Entrega,20000,20000,25000\"\"\"\n", "\n", "# Criar DataFrame\n", "df = pd.read_csv(io.StringIO(data))\n", "\n", "\n", "\n", "# Cálculos adicionais\n", "df['CV'] = df['Valor Agregado'] - df['Custo Real']\n", "df['SV'] = df['Valor Agregado'] - df['Custo Planejado']\n", "df['CPI'] = df['Valor Agregado'] / df['Custo Real']\n", "df['SPI'] = df['Valor Agregado'] / df['Custo Planejado']\n", "\n", "# Exibindo os dados\n", "df" ] }, { "cell_type": "markdown", "id": "e981aa13", "metadata": {}, "source": [ "## Visualização dos Indicadores" ] }, { "cell_type": "code", "execution_count": 6, "id": "cb3ac94c", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABW0AAAJOCAYAAADMCCWlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB5kElEQVR4nOzdf3zN9f//8fsZdjabHb9mPzIzP/IjhJWZ/KzlKMX6ofyo0KJEGsqPaESlN8mvfugn6k3kXXmLGmvpnbIUNaImiggbYTslhu31/aPvXh/HZoZt5zW7XS+Xc+G8Xs/X8/V8vV7nnD123+u8XjbDMAwBAAAAAAAAACzBy9MDAAAAAAAAAAD8H0JbAAAAAAAAALAQQlsAAAAAAAAAsBBCWwAAAAAAAACwEEJbAAAAAAAAALAQQlsAAAAAAAAAsBBCWwAAAAAAAACwEEJbAAAAAAAAALAQQlsAAAAAAAAAsBBCWwA4y+effy6bzabPP/+8xNbxn//8R1WrVtV1112nHTt2aPDgwZo1a1aJre9MNptNkyZNKpV1lWXvvfeeqlevrr/++qvE13X48GH5+fnp448/LvF1AQCA0kFNicvd3r175ePjo6+++qrE19W2bVuNHj26xNcDWAmhLQDL69GjhypXrqw///zznG369esnb29vHT58uBRHdvGmTZumwYMHKyQkRI0bN9YHH3yg2NhYTw/rouXk5Gj+/Pnq3LmzqlevLrvdrrp162rgwIHauHFjiaxz//79mjRpklJTU4u975ycHE2cOFGPPPKI/P39880737Ze6Gu2Ro0aeuCBB/Tkk08W+7YAAIB/UFNanydqSly8yZMnKyoqStddd53b9I8++kidOnVSrVq1VLlyZdWrV0933XWXEhMTJUkvvPCCbDabPv3003P2/frrr8tms2nFihWSpDFjxuill15Senp6yW0QYDGEtgAsr1+/fjp+/Lg+/PDDAuf//fff+u9//6tu3bqpRo0al7y+jh076vjx4+rYseMl93Uuy5Yt07PPPqv//Oc/Sk9P1++//666deuW2PpK0vHjx3XLLbfo/vvvl2EYeuKJJ/TKK6/ovvvuU0pKitq0aaPff/+92Ne7f/9+PfXUUyUS2n700Ufavn27Bg8e7Da9qNt6Ma/Zhx56SN99950+++yzYt8eAABATWl1nqopcXEOHTqkhQsX6qGHHnKb/vzzz6tHjx6y2WwaN26cZs6cqTvuuEM7duzQkiVLJEm9e/eWl5eXFi9efM7+Fy9erBo1auimm26SJPXs2VMBAQF6+eWXS26jAKsxAMDi/v77b6NKlSqG0+kscP7ixYsNScaSJUsuaT3Hjx83cnJyLqmPskCSMXHixGLrb+jQoYYkY+bMmfnmnT592pg+fbqxd+/eYltfnm+//daQZMyfP7/Y++7Ro4fRvn37fNOLuq0X+5pt1qyZce+99xbLNgAAAHfUlMXLajXlX3/9VWxj8YRjx455eggX5IUXXjB8fX2NP//805x26tQpIyAgwLjxxhsLXCYjI8P8/w033GA4HA7jxIkT+dr9/vvvhpeXl/HQQw+5TR82bJgRHh5u5ObmFtNWANbGmbYALM/X11e33367kpOTdfDgwXzzFy9erCpVqqhHjx46cuSIHnvsMTVv3lz+/v4KCAjQTTfdpM2bN7stk3eNsSVLlmjChAm64oorVLlyZblcrgKvP7Zu3Tr16tVLderUkd1uV1hYmEaMGKHjx4/nG09aWpruuusuBQYGytfXV40aNdL48ePN+bt27dKQIUN05ZVXytfXVzVq1FCvXr20e/fufH39+uuv6tWrl6pXr67KlSurbdu2WrVqVZH2W3Z2tkaMGKHAwEBz/5zr7IR9+/bp/vvvV1BQkOx2u6666iq99dZb513H77//rldffVU33nij4uPj882vUKGCHnvsMdWuXVuSNGDAgALP/pg0aZJsNpvbtKSkJLVv315Vq1aVv7+/GjVqpCeeeELSP8fv2muvlSQNHDhQNptNNptNCxYsMJdftmyZIiMj5evrq5o1a+qee+7Rvn37zrtNJ06cUGJiomJiYi56Wy/kNXumG2+8UR999JEMwzjvOAEAwIWhprx8asq82vHHH39U3759Va1aNbVv316SdPr0aU2ZMkX169c3L6/wxBNPKDs7263PunXr6pZbbtGXX36pNm3ayMfHR/Xq1dPbb7+db/1F3X+//fabevToIT8/P9WqVUsjRozQ6tWr870OOnfurGbNmmnTpk3q2LGjKleubNa5//3vf9W9e3eFhobKbrerfv36mjJlinJyctzWldfHli1b1KlTJ1WuXFkNGjTQf/7zH0nS//73P0VFRZmvnbMvRfDbb7/p4YcfVqNGjc77+inI8uXLFRUV5XYpsT/++EMulyvf5RLy1KpVy/z/Pffco6ysrAL345IlS5Sbm6t+/fq5Tb/xxhv122+/lcg37QArIrQFUCb069dPp0+f1nvvvec2/ciRI1q9erVuu+02+fr66tdff9Xy5ct1yy236IUXXtDjjz+uH374QZ06ddL+/fvz9TtlyhStWrVKjz32mJ599ll5e3sXuP5ly5bp77//1pAhQzR37lw5nU7NnTtX9913n1u7LVu2KCoqSp999pkGDRqk2bNnKzY2Vh999JHZZsOGDUpJSVGfPn00Z84cPfjgg0pOTlbnzp31999/m+0yMjLUrl07rV69Wg8//LCeeeYZnThxQj169Djn1/rO9MADD2jWrFnq2rWrnnvuOVWqVEndu3fP1y4jI0Nt27bVp59+qmHDhmn27Nlq0KCB4uLiznsji08++USnT5/Wvffee97xXIht27bplltuUXZ2tiZPnqwZM2aoR48e5k0OmjRposmTJ0uSBg8erHfeeUfvvPOO+fXDBQsW6K677lKFChU0depUDRo0SB988IHat2+vzMzMQte9adMmnTx5Uq1bt76kbS3qa/ZMkZGRyszM1LZt24q0DgAAcGGoKS+vmrJXr176+++/9eyzz2rQoEHmeBMSEtS6dWvNnDlTnTp10tSpU9W7d+98y+/cuVN33nmnbrzxRs2YMUPVqlXTgAED3Gqxou6/Y8eO6frrr9enn36q4cOHa/z48Vq/fr3GjBlT4NgPHz6sm266SS1bttSsWbPUpUsXSf/Usf7+/ho5cqRmz56tyMhIJSQkaOzYsfn6OHr0qG655RZFRUVp2rRpstvt6t27t5YuXarevXvr5ptv1nPPPadjx47pzjvvdLue87fffqv169erd+/emjNnjh566KECXz8FOXXqlL799tt89XKtWrXk6+urjz76SEeOHCm0j9tvv10+Pj4FXiJh8eLFCg8Pzxf+RkZGSlKp3PgMsARPn+oLAEVx+vRpIyQkxIiOjnabPm/ePEOSsXr1asMwDOPEiRP5vo62a9cuw263G5MnTzanrV271pBk1KtXz/j777/d2ufNW7t2rTnt7DaGYRhTp041bDab8dtvv5nTOnbsaFSpUsVtmmEYbl/hKaivlJQUQ5Lx9ttvm9Pi4+MNSca6devMaX/++acRERFh1K1bt9Cv3aWmphqSjIcffthtet++ffN9lS0uLs4ICQkx/vjjD7e2vXv3NhwOR4HjzTNixAhDkvH999+fs82Z+vfvb4SHh+ebPnHiROPMH0kzZ840JBmHDh06Z1/nujzCyZMnjVq1ahnNmjUzjh8/bk5fuXKlIclISEgodIxvvPGGIcn44Ycf3KZf6LYW9TV7pvXr1xuSjKVLlxZpHQAA4MJQU/6jrNeUebVjnz59ChzvAw884Db9scceMyQZn332mTktPDzckGR88cUX5rSDBw8adrvdGDVqlDmtqPtvxowZhiRj+fLlZrvjx48bjRs3zvc66NSpkyHJmDdvXr5tK2g/Pfjgg0blypXdLiWQ18fixYvNaWlpaYYkw8vLy/j666/N6atXr85XNxf19VOQnTt3GpKMuXPn5puXkJBgSDL8/PyMm266yXjmmWeMTZs2FdhPr169DB8fHyMrKyvfNowbN67AZby9vY0hQ4YUOj7gcsGZtgDKhAoVKqh3795KSUlx+8rO4sWLFRQUpBtuuEGSZLfb5eX1z0dbTk6ODh8+bH61/rvvvsvXb//+/fOd7ViQM9scO3ZMf/zxh9q1ayfDMPT9999L+udi/F988YXuv/9+1alTx235M7/6f2Zfp06d0uHDh9WgQQNVrVrVbYwff/yx2rRpY37VS5L8/f01ePBg7d69Wz/++OM5x/vxxx9LkoYPH+42/eyvmxmGoffff1+33nqrDMPQH3/8YT6cTqeysrIK3G95XC6XJKlKlSrnbHMxqlatKumfr4fl5uZe0LIbN27UwYMH9fDDD8vHx8ec3r17dzVu3Pi8XwXMu1t0tWrV3KZf6LYW9TV7prx1/vHHH0VaBwAAuDDUlP+4XGrKs2+ClTfekSNHuk0fNWqUJOWrA5s2baoOHTqYzwMDA9WoUSP9+uuvbn0WZf8lJibqiiuucLv8lY+Pj3kG8NnsdrsGDhyYb/qZx/XPP//UH3/8oQ4dOujvv/9WWlqaW1t/f3+3M4gbNWqkqlWrqkmTJoqKijKn5/3/zO0q6uunIOeqlyXpqaee0uLFi9WqVSutXr1a48ePV2RkpFq3bq2ffvrJre0999yjEydO6IMPPjCn5Z15e/alEfJUq1aNWhnlBqEtgDIj7wd33g/y33//XevWrVPv3r1VoUIFSVJubq5mzpyphg0bym63q2bNmgoMDNSWLVuUlZWVr8+IiIgirXvPnj0aMGCAqlevLn9/fwUGBqpTp06SZPabVwQ1a9as0L6OHz+uhIQEhYWFuY0xMzPTbYy//fabGjVqlG/5Jk2amPPP5bfffpOXl5fq16/vNv3s/g4dOqTMzEy99tprCgwMdHvkFZEFXfMtT0BAgCS5fdWqONx999267rrr9MADDygoKEi9e/fWe++9V6QAN2+/FLTvGjduXOh+O5Nx1nVlL2Zbi/KaLWidZ1/fFwAAFB9qyn9cDjXl2fs9b7wNGjRwmx4cHKyqVavm29azQ3Hpn1Dw6NGjbn0WZf/99ttvql+/fr467uyx5LniiisKvIzGtm3bdNttt8nhcCggIECBgYG65557JCnfa6927dr51udwOBQWFpZvmiS37Srq66cwZ9fLefr06aN169bp6NGjWrNmjfr27avvv/9et956q06cOGG2u+mmm1S9enW3SyS8++67uvrqq3XVVVedc53UyigvKnp6AABQVJGRkWrcuLHeffddPfHEE3r33XdlGIbbX2GfffZZPfnkk7r//vs1ZcoUVa9eXV5eXoqPjy8w8CvKGRE5OTm68cYbdeTIEY0ZM0aNGzeWn5+f9u3bpwEDBlzwmaCPPPKI5s+fr/j4eEVHR8vhcMhms6l3794X3NelylvfPffco/79+xfYpkWLFudcvnHjxpKkH374QS1btjzv+s5VYJ19YwVfX1998cUXWrt2rVatWqXExEQtXbpU119/vdasWVNg4FlcatSoIemfojbvZhfShW+rVLTX7JnyCumaNWtewhYAAIDCUFMWv9KuKfOca78XNdQ7V015rjCyOBU09szMTHXq1EkBAQGaPHmy6tevLx8fH3333XcaM2ZMvuN6rvEXZbsu5fVzZr1cmICAAN1444268cYbValSJS1cuFAbNmww/1BRqVIl3XXXXXr99deVkZGhPXv2aMeOHZo2bdo5+8zMzKRWRrlBaAugTOnXr5+efPJJbdmyRYsXL1bDhg117bXXmvP/85//qEuXLnrzzTfdlruUH+4//PCDfv75Zy1cuNDtJhFJSUlu7erVqydJ2rp1a6H9/ec//1H//v01Y8YMc9qJEyfy3SArPDxc27dvz7d83teiwsPDz7mO8PBw5ebm6pdffnE7M+Ds/vLuApyTk6OYmJhCx12Qm266SRUqVNC///3vIt04olq1agXeCKygMzy8vLx0ww036IYbbtALL7ygZ599VuPHj9fatWsVExNzzmI8b79s375d119/vdu87du3F7rfpP/7pWHXrl1q3ry5Of1CtzXP+V6zZ9q1a5ek/ztzAwAAlAxqyrJdU55vvDt27HCrpzIyMpSZmXneOvBcfRZl/4WHh+vHH3/Mdybozp07i7yuzz//XIcPH9YHH3xg3mBX+r8asTgV9fVTkDp16sjX1/eCxnXNNddo4cKFOnDggNv0fv36ad68eVq6dKl27dolm82mPn36FNjHvn37dPLkSWpllBtcHgFAmZJ3BkRCQoJSU1PznbFYoUKFfH8ZX7Zsmfbt23fR68z7S/WZ/RqGodmzZ7u1CwwMVMeOHfXWW29pz549bvPOXLagMc6dOzff2aY333yzvvnmG6WkpJjTjh07ptdee01169ZV06ZNzznmm266SZI0Z84ct+ln37m3QoUKuuOOO/T+++8X+IvBoUOHzrkOSQoLC9OgQYO0Zs0azZ07N9/83NxczZgxQ7///rskqX79+srKytKWLVvMNgcOHMh35+KC7jabd9ZFdna2JMnPz0+S8hWW11xzjWrVqqV58+aZbaV/7kr8008/FXi34zNFRkbK29tbGzduvKRtzXO+1+yZNm3aJIfDcc6vgwEAgOJBTVm2a8pzufnmmwsc3wsvvCBJ560Dz9VnUfaf0+nUvn37tGLFCrPdiRMn9Prrrxd5XQW9Rk6ePKmXX375gsddlHUV5fVTkEqVKumaa67JVy///fffbvvpTJ988omk/JfWuO6661S3bl39+9//1tKlS9WpUye3b7udadOmTZKkdu3anXeMwOWAM20BlCkRERFq166d/vvf/0rKf4H6W265RZMnT9bAgQPVrl07/fDDD1q0aJF5xsLFaNy4serXr6/HHntM+/btU0BAgN5///0Cvw40Z84ctW/fXq1bt9bgwYMVERGh3bt3a9WqVUpNTTXH+M4778jhcKhp06ZKSUnRp59+an7NKM/YsWP17rvv6qabbtLw4cNVvXp1LVy4ULt27dL7779v3hyjIC1btlSfPn308ssvKysrS+3atVNycnKBf+l/7rnntHbtWkVFRWnQoEFq2rSpjhw5ou+++06ffvppgQHqmWbMmKFffvlFw4cP1wcffKBbbrlF1apV0549e7Rs2TKlpaWZN0jo3bu3xowZo9tuu03Dhw/X33//rVdeeUVXXnml2w0PJk+erC+++ELdu3dXeHi4Dh48qJdfflm1a9c2bwJRv359Va1aVfPmzVOVKlXk5+enqKgoRURE6F//+pcGDhyoTp06qU+fPsrIyNDs2bNVt25djRgxotDt8fHxUdeuXfXpp59q8uTJF72tec73mj1TUlKSbr31Vq7TBQBACaOmLNs15blcffXV6t+/v1577TXzUgPffPONFi5cqNjYWHXp0qXQ5QtS1P334IMP6sUXX1SfPn306KOPKiQkRIsWLTJvjFuU+q5du3aqVq2a+vfvr+HDh8tms+mdd94pkcs1FPX1cy49e/bU+PHj5XK5zGsS//3332rXrp3atm2rbt26KSwsTJmZmVq+fLnWrVun2NhYtWrVyq0fm82mvn376tlnn5WkfPX3mZKSklSnTp18fQCXLQMAypiXXnrJkGS0adMm37wTJ04Yo0aNMkJCQgxfX1/juuuuM1JSUoxOnToZnTp1MtutXbvWkGQsW7YsXx9589auXWtO+/HHH42YmBjD39/fqFmzpjFo0CBj8+bNhiRj/vz5bstv3brVuO2224yAgABDktGoUSPjySefNOcfPXrUGDhwoFGzZk3D39/fcDqdRlpamhEeHm7079/fra9ffvnFuPPOO42qVasaPj4+Rps2bYyVK1cWaT8dP37cGD58uFGjRg3Dz8/PuPXWW429e/cakoyJEye6tc3IyDCGDh1qhIWFGZUqVTKCg4ONG264wXjttdeKtK7Tp08bb7zxhtGhQwfD4XAYlSpVMsLDw42BAwca33//vVvbNWvWGM2aNTO8vb2NRo0aGf/+97+NiRMnGmf+SEpOTjZ69uxphIaGGt7e3kZoaKjRp08f4+eff3br67///a/RtGlTo2LFivmOxdKlS41WrVoZdrvdqF69utGvXz/j999/L9L2fPDBB4bNZjP27NlzSduap7DXbJ6ffvrJkGR8+umnRRojAAC4NNSUZbemzKsdDx06lK+PU6dOGU899ZQRERFhVKpUyQgLCzPGjRtnnDhxwq1deHi40b1793zLn32MDaPo++/XX381unfvbvj6+hqBgYHGqFGjjPfff9+QZHz99ddu67jqqqsK3AdfffWV0bZtW8PX19cIDQ01Ro8ebaxevTrfa+lcfZxruyQZQ4cONZ9fyOunIBkZGUbFihWNd955x5x26tQp4/XXXzdiY2ON8PBww263G5UrVzZatWplTJ8+3cjOzi6wr23bthmSDLvdbhw9erTANjk5OUZISIgxYcKE844NuFzYDKMUrrANAOVUTEyMRo8era5du3p6KLgAOTk5atq0qe666y5NmTKlVNYZHx+vL774Qps2beJMWwAA4IaasuyaNWuWRowYod9//11XXHGFp4dTrOLi4vTzzz9r3bp1Jb6u5cuXq2/fvvrll18UEhJS4usDrIDQFgBK0OzZs7Vp0ya9/fbbnh4KLtDSpUs1ZMgQ7dmzR/7+/iW6rsOHDys8PFzvvfeeeS02AACAPNSUZcPx48fl6+trPj9x4oRatWqlnJwc/fzzzx4cWcnYs2ePrrzySiUnJ+u6664r0XVFR0erQ4cOmjZtWomuB7ASQlsAKAHvvvuujh07pgULFqhWrVr64IMPPD0kAAAAlDHUlGXLTTfdpDp16qhly5bKysrSv//9b23btk2LFi1S3759PT08AGUMNyIDgBKwbds2Pf/88woJCeGvwQAAALgo1JRli9Pp1BtvvKFFixaZl9tasmSJ7r77bk8PDUAZxJm2AAAAQDnx0ksvafr06UpPT9fVV1+tuXPnqk2bNp4eFgAAAM7i5ekBAAAAACh5S5cu1ciRIzVx4kR99913uvrqq+V0OnXw4EFPDw0AAABn4UxbAAAAoByIiorStddeqxdffFGSlJubq7CwMD3yyCMaO3ash0cHAACAM3FNWw/Jzc3V/v37VaVKFdlsNk8PBwAAoEwyDEN//vmnQkND5eXFl8jO5eTJk9q0aZPGjRtnTvPy8lJMTIxSUlIKXCY7O1vZ2dnm89zcXB05ckQ1atSgfgUAALhIRa1fCW09ZP/+/QoLC/P0MAAAAC4Le/fuVe3atT09DMv6448/lJOTo6CgILfpQUFBSktLK3CZqVOn6qmnniqN4QEAAJQ756tfCW09pEqVKpL+OUABAQEeHg0AAEDZ5HK5FBYWZtZWKD7jxo3TyJEjzedZWVmqU6cO9SuKzOHw9AjKj6yskumXY1h6SuoYArCeotavhLYekveVsoCAAIpeAACAS8TX9QtXs2ZNVahQQRkZGW7TMzIyFBwcXOAydrtddrs933TqV8B6eEuWfRxDoPw5X/3Khb8AAACAy5y3t7ciIyOVnJxsTsvNzVVycrKio6M9ODIAAAAUhDNtAQAAgHJg5MiR6t+/v6655hq1adNGs2bN0rFjxzRw4EBPDw0AAABnIbQFAAAAyoG7775bhw4dUkJCgtLT09WyZUslJibmuzkZAAAAPI/QFgAAACgnhg0bpmHDhnl6GAAAADgPrmkLAAAAAAAAABZCaAsAAAAAAAAAFkJoCwAAAAAAAAAWQmgLAAAAAAAAABZCaAsAAAAAAAAAFkJoCwAAAAAAAAAWQmgLAAAAAAAAABZCaAsAAAAAAAAAFkJoCwAAAAAAAAAWQmgLAAAAAAAAABZCaAsAAAAAAAAAFkJoCwAAAAAAAAAWclmFtpMmTZLNZnN7NG7c2Jx/4sQJDR06VDVq1JC/v7/uuOMOZWRkuPWxZ88ede/eXZUrV1atWrX0+OOP6/Tp025tPv/8c7Vu3Vp2u10NGjTQggULSmPzAAAAAAAAAJQDl1VoK0lXXXWVDhw4YD6+/PJLc96IESP00UcfadmyZfrf//6n/fv36/bbbzfn5+TkqHv37jp58qTWr1+vhQsXasGCBUpISDDb7Nq1S927d1eXLl2Umpqq+Ph4PfDAA1q9enWpbicAAAAAAACAy1NFTw+guFWsWFHBwcH5pmdlZenNN9/U4sWLdf3110uS5s+fryZNmujrr79W27ZttWbNGv3444/69NNPFRQUpJYtW2rKlCkaM2aMJk2aJG9vb82bN08RERGaMWOGJKlJkyb68ssvNXPmTDmdzlLdVgAAAAAAAACXn8vuTNsdO3YoNDRU9erVU79+/bRnzx5J0qZNm3Tq1CnFxMSYbRs3bqw6deooJSVFkpSSkqLmzZsrKCjIbON0OuVyubRt2zazzZl95LXJ6+NcsrOz5XK53B4AAAAAAAAAcLbL6kzbqKgoLViwQI0aNdKBAwf01FNPqUOHDtq6davS09Pl7e2tqlWrui0TFBSk9PR0SVJ6erpbYJs3P29eYW1cLpeOHz8uX1/fAsc2depUPfXUU8WxmSivFts8PYLyoa/h6RHAyngflh7eiwAAAADKscsqtL3pppvM/7do0UJRUVEKDw/Xe++9d84wtbSMGzdOI0eONJ+7XC6FhYV5cEQAAAAAAAAArOiyuzzCmapWraorr7xSO3fuVHBwsE6ePKnMzEy3NhkZGeY1cIODg5WRkZFvft68wtoEBAQUGgzb7XYFBAS4PQAAAAAAAADgbJd1aPvXX3/pl19+UUhIiCIjI1WpUiUlJyeb87dv3649e/YoOjpakhQdHa0ffvhBBw8eNNskJSUpICBATZs2Nduc2Udem7w+AAAAAAAAAOBSXFah7WOPPab//e9/2r17t9avX6/bbrtNFSpUUJ8+feRwOBQXF6eRI0dq7dq12rRpkwYOHKjo6Gi1bdtWktS1a1c1bdpU9957rzZv3qzVq1drwoQJGjp0qOx2uyTpoYce0q+//qrRo0crLS1NL7/8st577z2NGDHCk5sOAAAAAAAA4DJxWV3T9vfff1efPn10+PBhBQYGqn379vr6668VGBgoSZo5c6a8vLx0xx13KDs7W06nUy+//LK5fIUKFbRy5UoNGTJE0dHR8vPzU//+/TV58mSzTUREhFatWqURI0Zo9uzZql27tt544w05nc5S314AAAAAAAAAlx+bYRjcntkDXC6XHA6HsrKyuL4tioa71pcO7liPwvA+LD28F1FE1FSlh32NC2Xjx2apKanf6jmGpYdkBig/ilpTXVaXRwAAAAAAAACAso7QFgAAAAAAAAAshNAWAAAAAAAAACyE0BYAAAAAAAAALITQFgAAAAAAAAAshNAWAAAAAAAAACyE0BYAAAAAAAAALITQFgAAAAAAAAAshNAWAAAAAAAAACyE0BYAAAAAAAAALITQFgAAAAAAAAAshNAWAAAAAAAAACyE0BYAAAAAAAAALITQFgAAAAAAAAAshNAWAAAAAAAAACyE0BYAAAAAAAAALITQFgAAAAAAAAAshNAWAAAAAAAAACyE0BYAAAAAAAAALITQFgAAAAAAAAAshNAWAAAAAAAAACyE0BYAAAAAAAAALITQFgAAAAAAAAAshNAWAAAAAAAAACyE0BYAAAAAAAAALITQFgAAAAAAAAAshNAWAAAAAAAAACyE0BYAAAAAAAAALITQFgAAAAAAAAAshNAWAAAAAAAAACyE0BYAAAAAAAAALITQFgAAAAAAAAAshNAWAAAAAAAAACyE0BYAAAAAAAAALITQFgAAAAAAAAAshNAWAAAAAAAAACyE0BYAAAAAAAAALITQFgAAAAAAAAAshNAWAAAAAAAAACyE0BYAAAAAAAAALITQFgAAAAAAAAAshNAWAAAAAAAAACyE0BYAAAAAAAAALITQFgAAAAAAAAAshNAWAAAAAAAAACyE0BYAAAAAAAAALITQFgAAAAAAAAAshNAWAAAAAAAAACyE0BYAAAAAAAAALITQFgAAAAAAAAAshNAWAAAAAAAAACyE0BYAAAAAAAAALITQFgAAAAAAAAAshNAWAAAAAAAAACyE0BYAAAAAAAAALITQFgAAAAAAAAAshNAWAAAAAAAAACyE0BYAAAAAAAAALITQFgAAAAAAAAAshNAWAAAAAAAAACyE0BYAAAAAAAAALITQFgAAAAAAAAAshNAWAAAA8JBnnnlG7dq1U+XKlVW1atUC2+zZs0fdu3dX5cqVVatWLT3++OM6ffq0W5vPP/9crVu3lt1uV4MGDbRgwYJ8/bz00kuqW7eufHx8FBUVpW+++aYEtggAAADFgdAWAAAA8JCTJ0+qV69eGjJkSIHzc3Jy1L17d508eVLr16/XwoULtWDBAiUkJJhtdu3ape7du6tLly5KTU1VfHy8HnjgAa1evdpss3TpUo0cOVITJ07Ud999p6uvvlpOp1MHDx4s8W0EAADAhbMZhmF4ehDlkcvlksPhUFZWlgICAjw9HJQFi22eHkH50JePRBSC92Hp4b2IIrpcaqoFCxYoPj5emZmZbtM/+eQT3XLLLdq/f7+CgoIkSfPmzdOYMWN06NAheXt7a8yYMVq1apW2bt1qLte7d29lZmYqMTFRkhQVFaVrr71WL774oiQpNzdXYWFheuSRRzR27NgijfFy2dcoPTZ+bJaakvqtnmNYekhmgPKjqDUVZ9peAr5iBgAAgJKUkpKi5s2bm4GtJDmdTrlcLm3bts1sExMT47ac0+lUSkqKpH/O5t20aZNbGy8vL8XExJhtCpKdnS2Xy+X2AAAAQOkgtL1IfMUMAAAAJS09Pd0tsJVkPk9PTy+0jcvl0vHjx/XHH38oJyenwDZ5fRRk6tSpcjgc5iMsLKw4NgkAAABFQGh7kV544QUNGjRIAwcOVNOmTTVv3jxVrlxZb731lqeHBgAAAA8aO3asbDZboY+0tDRPD/O8xo0bp6ysLPOxd+9eTw8JAACg3Kjo6QGURXlfMRs3bpw5rShfMQMAAMDlb9SoURowYEChberVq1ekvoKDg/NdgisjI8Ocl/dv3rQz2wQEBMjX11cVKlRQhQoVCmyT10dB7Ha77HZ7kcYJAACA4kVoexEK+4rZuc6ayM7OVnZ2tvmca4IBAABcngIDAxUYGFgsfUVHR+uZZ57RwYMHVatWLUlSUlKSAgIC1LRpU7PNxx9/7LZcUlKSoqOjJUne3t6KjIxUcnKyYmNjJf1zI7Lk5GQNGzasWMYJAACA4kVoW0qmTp2qp556ynMD4I7npaMk73bOndTLPt6Hpaek3i+8D8s+3oelh/dLkezZs0dHjhzRnj17lJOTo9TUVElSgwYN5O/vr65du6pp06a69957NW3aNKWnp2vChAkaOnSoeRbsQw89pBdffFGjR4/W/fffr88++0zvvfeeVq1aZa5n5MiR6t+/v6655hq1adNGs2bN0rFjxzRw4EBPbDYAAADOg9D2ItSsWfOCv2I2btw4jRw50nzucrm4mQMAAEA5l5CQoIULF5rPW7VqJUlau3atOnfurAoVKmjlypUaMmSIoqOj5efnp/79+2vy5MnmMhEREVq1apVGjBih2bNnq3bt2nrjjTfkdDrNNnfffbcOHTqkhIQEpaenq2XLlkpMTMz3zTEAAABYg80wDE6DuAhRUVFq06aN5s6dK+mfr5jVqVNHw4YN09ixY8+7vMvlksPhUFZWlgICAkp6uJxZVFo4qwiF4X1Yengv4lx4H5aeUnoflnpNVY6xr3GhbHzklpqS+q2eY1h6SGaA8qOoNRVn2l4kvmIGAAAAAAAAoCQQ2l4kvmIGAAAAAAAAoCQQ2l6CYcOGccddAAAAAAAAAMXKy9MDAAAAAAAAAAD8H0JbAAAAAAAAALAQQlsAAAAAAAAAsBBCWwAAAAAAAACwEEJbAAAAAAAAALAQQlsAAAAAAAAAsBBCWwAAAAAAAACwEEJbAAAAAAAAALAQQlsAAAAAAAAAsBBCWwAAAAAAAACwEEJbAAAAAAAAALAQQlsAAAAAAAAAsBBCWwAAAAAAAACwEEJbAAAAAAAAALAQQlsAAAAAAAAAsBBCWwAAAAAAAACwEEJbAAAAAAAAALAQQlsAAAAAAAAAsBBCWwAAAAAAAACwEEJbAAAAAAAAALAQQlsAAAAAAAAAsBBCWwAAAAAAAACwEEJbAAAAAAAAALAQQlsAAAAAAAAAsBBCWwAAAAAAAACwEEJbAAAAAAAAALAQQlsAAAAAAAAAsBBCWwAAAAAAAACwEEJbAAAAAAAAALAQQlsAAAAAAAAAsBBCWwAAAAAAAACwEEJbAAAAAAAAALAQQlsAAAAAAAAAsBBCWwAAAAAAAACwEEJbAAAAAAAAALAQQlsAAAAAAAAAsBBCWwAAAAAAAACwEEJbAAAAAAAAALAQQlsAAAAAAAAAsBBCWwAAAAAAAACwEEJbAAAAAAAAALAQQlsAAAAAAAAAsBBCWwAAAAAAAACwEEJbAAAAAAAAALAQQlsAAAAAAAAAsBBCWwAAAAAAAACwEEJbAAAAAAAAALAQQlsAAAAAAAAAsBBCWwAAAAAAAACwEEJbAAAAAAAAALAQQlsAAAAAAAAAsBBCWwAAAAAAAACwEEJbAAAAAAAAALAQQlsAAAAAAAAAsBBCWwAAAAAAAACwEEJbAAAAAAAAALAQQlsAAAAAAAAAsBBCWwAAAAAAAACwEEJbAAAAAAAAALAQQlsAAAAAAAAAsBBCWwAAAAAAAACwEEJbAAAAAAAAALAQQlsAAAAAAAAAsBBCWwAAAAAAAACwEEJbAAAAAAAAALAQQlsAAAAAAAAAsJDLKrStW7eubDab2+O5555za7NlyxZ16NBBPj4+CgsL07Rp0/L1s2zZMjVu3Fg+Pj5q3ry5Pv74Y7f5hmEoISFBISEh8vX1VUxMjHbs2FGi2wYAAAAAAACgfLisQltJmjx5sg4cOGA+HnnkEXOey+VS165dFR4erk2bNmn69OmaNGmSXnvtNbPN+vXr1adPH8XFxen7779XbGysYmNjtXXrVrPNtGnTNGfOHM2bN08bNmyQn5+fnE6nTpw4UarbCgAAAAAAAODyc9mFtlWqVFFwcLD58PPzM+ctWrRIJ0+e1FtvvaWrrrpKvXv31vDhw/XCCy+YbWbPnq1u3brp8ccfV5MmTTRlyhS1bt1aL774oqR/zrKdNWuWJkyYoJ49e6pFixZ6++23tX//fi1fvry0NxcAAAAAAADAZeayC22fe+451ahRQ61atdL06dN1+vRpc15KSoo6duwob29vc5rT6dT27dt19OhRs01MTIxbn06nUykpKZKkXbt2KT093a2Nw+FQVFSU2aYg2dnZcrlcbg8AAAAAAAAAOFtFTw+gOA0fPlytW7dW9erVtX79eo0bN04HDhwwz6RNT09XRESE2zJBQUHmvGrVqik9Pd2cdmab9PR0s92ZyxXUpiBTp07VU089dWkbeCn6Gp5bNwAAVsHPQwAAAABlgOXPtB07dmy+m4ud/UhLS5MkjRw5Up07d1aLFi300EMPacaMGZo7d66ys7M9vBXSuHHjlJWVZT727t3r6SEBAAAAAAAAsCDLn2k7atQoDRgwoNA29erVK3B6VFSUTp8+rd27d6tRo0YKDg5WRkaGW5u858HBwea/BbU5c37etJCQELc2LVu2POcY7Xa77HZ7odsBAAAAAAAAAJYPbQMDAxUYGHhRy6ampsrLy0u1atWSJEVHR2v8+PE6deqUKlWqJElKSkpSo0aNVK1aNbNNcnKy4uPjzX6SkpIUHR0tSYqIiFBwcLCSk5PNkNblcmnDhg0aMmTIRW4lAAAAAAAAAPzD8pdHKKqUlBTNmjVLmzdv1q+//qpFixZpxIgRuueee8xAtm/fvvL29lZcXJy2bdumpUuXavbs2Ro5cqTZz6OPPqrExETNmDFDaWlpmjRpkjZu3Khhw4ZJkmw2m+Lj4/X0009rxYoV+uGHH3TfffcpNDRUsbGxnth0AAAAAAAAAJcRy59pW1R2u11LlizRpEmTlJ2drYiICI0YMcItkHU4HFqzZo2GDh2qyMhI1axZUwkJCRo8eLDZpl27dlq8eLEmTJigJ554Qg0bNtTy5cvVrFkzs83o0aN17NgxDR48WJmZmWrfvr0SExPl4+NTqtsMAAAAAAAA4PJjMwyD2yh7gMvlksPhUFZWlgICAjw9HAClYbHN0yMoP/ryow0oL6ipSg/7GhfKRulTakrqt3qOYekhmQHKj6LWVJfN5REAAAAAAAAA4HJAaAsAAAAAAAAAFkJoCwAAAAAAAAAWQmgLAAAAAAAAABZCaAsAAAAAAAAAFkJoCwAAAHjA7t27FRcXp4iICPn6+qp+/fqaOHGiTp486dZuy5Yt6tChg3x8fBQWFqZp06bl62vZsmVq3LixfHx81Lx5c3388cdu8w3DUEJCgkJCQuTr66uYmBjt2LGjRLcPAAAAF4/QFgAAAPCAtLQ05ebm6tVXX9W2bds0c+ZMzZs3T0888YTZxuVyqWvXrgoPD9emTZs0ffp0TZo0Sa+99prZZv369erTp4/i4uL0/fffKzY2VrGxsdq6davZZtq0aZozZ47mzZunDRs2yM/PT06nUydOnCjVbQYAAEDR2AzDMDw9iPLI5XLJ4XAoKytLAQEBnh4OgNKw2ObpEZQfffnRBpQXl1tNNX36dL3yyiv69ddfJUmvvPKKxo8fr/T0dHl7e0uSxo4dq+XLlystLU2SdPfdd+vYsWNauXKl2U/btm3VsmVLzZs3T4ZhKDQ0VKNGjdJjjz0mScrKylJQUJAWLFig3r17F2lsl9u+RsmzUfqUmpL6rZ5jWHpIZoDyo6g1FWfaAgAAABaRlZWl6tWrm89TUlLUsWNHM7CVJKfTqe3bt+vo0aNmm5iYGLd+nE6nUlJSJEm7du1Senq6WxuHw6GoqCizTUGys7PlcrncHgAAACgdhLYAAACABezcuVNz587Vgw8+aE5LT09XUFCQW7u85+np6YW2OXP+mcsV1KYgU6dOlcPhMB9hYWEXuWUAAAC4UIS2AAAAQDEaO3asbDZboY+8Sxvk2bdvn7p166ZevXpp0KBBHhq5u3HjxikrK8t87N2719NDAgAAKDcqenoAAAAAwOVk1KhRGjBgQKFt6tWrZ/5///796tKli9q1a+d2gzFJCg4OVkZGhtu0vOfBwcGFtjlzft60kJAQtzYtW7Y85xjtdrvsdnuh2wEAAICSQWgLAAAAFKPAwEAFBgYWqe2+ffvUpUsXRUZGav78+fLycv8iXHR0tMaPH69Tp06pUqVKkqSkpCQ1atRI1apVM9skJycrPj7eXC4pKUnR0dGSpIiICAUHBys5OdkMaV0ulzZs2KAhQ4Zc4tYCAACgJHB5BAAAAMAD9u3bp86dO6tOnTp6/vnndejQIaWnp7tdZ7Zv377y9vZWXFyctm3bpqVLl2r27NkaOXKk2ebRRx9VYmKiZsyYobS0NE2aNEkbN27UsGHDJEk2m03x8fF6+umntWLFCv3www+67777FBoaqtjY2NLebAAAABQBZ9oCAAAAHpCUlKSdO3dq586dql27tts8wzAkSQ6HQ2vWrNHQoUMVGRmpmjVrKiEhQYMHDzbbtmvXTosXL9aECRP0xBNPqGHDhlq+fLmaNWtmthk9erSOHTumwYMHKzMzU+3bt1diYqJ8fHxKZ2MBAABwQWxGXkWIUuVyueRwOJSVlaWAgABPDwdAaVhs8/QIyo++/GgDygtqqtLDvsaFslH6lJqS+q2eY1h6SGaA8qOoNRWXRwAAAAAAAAAACyG0BQAAAAAAAAALIbQFAAAAAAAAAAshtAUAAAAAAAAACyG0BQAAAAAAAAALIbQFAAAAAAAAAAshtAUAAAAAAAAACyG0BQAAAAAAAAALIbQFAAAAAAAAAAshtAUAAAAAAAAACyG0BQAAAAAAAAALIbQFAAAAAAAAAAshtAUAAAAAAAAACyG0BQAAAAAAAAALIbQFAAAAAAAAAAshtAUAAAAAAAAACyG0BQAAAAAAAAALIbQFAAAAAAAAAAshtAUAAAAAAAAACyG0BQAAAAAAAAALIbQFAAAAAAAAAAshtAUAAAAAAAAACyG0BQAAAAAAAAALIbQFAAAAAAAAAAshtAUAAAAAAAAACyG0BQAAAAAAAAALIbQFAAAAAAAAAAshtAUAAAAAAAAACyG0BQAAAAAAAAALIbQFAAAAAAAAAAshtAUAAAAAAAAACyG0BQAAAAAAAAALIbQFAAAAAAAAAAshtAUAAAAAAAAACyG0BQAAAAAAAAALIbQFAAAAAAAAAAshtAUAAAAAAAAACyG0BQAAAAAAAAALIbQFAAAAAAAAAAshtAUAAAAAAAAACyG0BQAAAAAAAAALIbQFAAAAAAAAAAshtAUAAAAAAAAACyG0BQAAAAAAAAALIbQFAAAAAAAAAAshtAUAAAAAAAAACyG0BQAAAAAAAAALIbQFAAAAAAAAAAspltD28OHDWrt2rTIyMoqjOwAAAMDjqHEBAADgKRcc2r766qt69dVXzeepqalq0KCBbrjhBtWrV0+rV68u1gHmeeaZZ9SuXTtVrlxZVatWLbDNnj171L17d1WuXFm1atXS448/rtOnT7u1+fzzz9W6dWvZ7XY1aNBACxYsyNfPSy+9pLp168rHx0dRUVH65ptv3OafOHFCQ4cOVY0aNeTv76877riDYh4AAKAM81SNCwAAABTkgkPb119/XTVr1jSfT5w4UT169JDL5dKoUaM0fvz4Yh1gnpMnT6pXr14aMmRIgfNzcnLUvXt3nTx5UuvXr9fChQu1YMECJSQkmG127dql7t27q0uXLkpNTVV8fLweeOABtyJ86dKlGjlypCZOnKjvvvtOV199tZxOpw4ePGi2GTFihD766CMtW7ZM//vf/7R//37dfvvtJbLdAAAAKHmeqnEBAACAgtgMwzCK0vCLL76QYRi67bbb9Pzzz6tBgwYyDEO33nqrpk2bpqZNm+ro0aPq27evPvnkE0lSx44di33ACxYsUHx8vDIzM92mf/LJJ7rlllu0f/9+BQUFSZLmzZunMWPG6NChQ/L29taYMWO0atUqbd261Vyud+/eyszMVGJioiQpKipK1157rV588UVJUm5ursLCwvTII49o7NixysrKUmBgoBYvXqw777xTkpSWlqYmTZooJSVFbdu2LdJ2uFwuORwOZWVlKSAg4FJ3C4CyYLHN0yMoP/oW6UcbgMvApdZUVqlxywLqV1woG6VPqSnab/UXjmNYekrqGAKwnqLWVEU+03bXrl3avXu3cnNzdeDAAe3atUtJSUmqUKGCKleurF27dumPP/5QTk6Odu/erV27dhXLhhRVSkqKmjdvbga2kuR0OuVyubRt2zazTUxMjNtyTqdTKSkpkv45m3fTpk1ubby8vBQTE2O22bRpk06dOuXWpnHjxqpTp47ZBgAAAGWD1WtcAAAAlE8Vi9qwf//+kv756tjevXt1//33Kzk5WTExMbrvvvskST///LNCQ0PN56UpPT3dLbCVZD5PT08vtI3L5dLx48d19OhR5eTkFNgmLS3N7MPb2zvfdXWDgoLM9RQkOztb2dnZ5nOXy3VhGwgAAIBiZ/UaFwAAAOXTBV/TdsqUKXr33XdVu3ZtrV69WpMmTTLnvfvuu7r++uuL3NfYsWNls9kKfeSFpWXd1KlT5XA4zEdYWJinhwQAAID/rzhrXAAAAOBSFflM2zxdunTRnj17tHPnTjVq1Ej+/v7mvB49eig4OLjIfY0aNUoDBgwotE29evWK1FdwcLC++eYbt2kZGRnmvLx/86ad2SYgIEC+vr6qUKGCKlSoUGCbM/s4efKkMjMz3c62PbNNQcaNG6eRI0eaz10uF8EtAACARRRnjQsAAABcqgs+01aSHA6HIiMj3YrZ7OxsffbZZ2rVqlWR+wkMDFTjxo0LfXh7exepr+joaP3www86ePCgOS0pKUkBAQFq2rSp2SY5OdltuaSkJEVHR0uSvL29FRkZ6dYmNzdXycnJZpvIyEhVqlTJrc327du1Z88es01B7Ha7AgIC3B4AAACwjuKqcQEAAIBLdUGhbXZ2tsaNG6drrrlG7dq10/LlyyVJ8+fPV0REhGbNmqURI0aUxDi1Z88epaamas+ePcrJyVFqaqpSU1P1119/SZK6du2qpk2b6t5779XmzZu1evVqTZgwQUOHDpXdbpckPfTQQ/r11181evRopaWl6eWXX9Z7773nNuaRI0fq9ddf18KFC/XTTz9pyJAhOnbsmAYOHCjpn2I+Li5OI0eO1Nq1a7Vp0yYNHDhQ0dHRatu2bYlsOwAAAEqOJ2tcAAAAoCAXdHmEhIQEvfrqq4qJidH69evVq1cvDRw4UF9//bVeeOEF9erVSxUqVCiRgSYkJGjhwoXm87yzHdauXavOnTurQoUKWrlypYYMGaLo6Gj5+fmpf//+mjx5srlMRESEVq1apREjRmj27NmqXbu23njjDTmdTrPN3XffrUOHDikhIUHp6elq2bKlEhMT3W5ONnPmTHl5eemOO+5Qdna2nE6nXn755RLZbgAAAJQsT9a4AAAAQEFshmEYRW1cr149zZo1Sz169NDWrVvVokULDRgwQG+++aZsNltJjvOy43K55HA4lJWVxaUSgPJiMZ+TpaZvkX+0ASjjiqOmosYtGupXXCjePqWn6L/VXxiOYekpqWMIwHqKWlNd0OURfv/9d0VGRkqSmjVrJrvdrhEjRlDMAgAAoMyixgUAAIDVXFBom5OT43ZjsIoVK7rdqAEAAAAoa6hxAQAAYDUXdE1bwzA0YMAA88ZeJ06c0EMPPSQ/Pz+3dh988EHxjRAAAAAoQdS4AAAAsJoLCm379+/v9vyee+4p1sEAAAAApY0aFwAAAFZzQaHt/PnzS2ocAAAAgEdQ4wIAAMBqLuiatgAAAAAAAACAkkVoCwAAAAAAAAAWQmgLAAAAAAAAABZCaAsAAAAAAAAAFkJoCwAAAAAAAAAWQmgLAAAAAAAAABZCaAsAAAAAAAAAFkJoCwAAAAAAAAAWQmgLAAAAAAAAABZCaAsAAAAAAAAAFkJoCwAAAAAAAAAWQmgLAAAAAAAAABZCaAsAAAAAAAAAFkJoCwAAAAAAAAAWQmgLAAAAAAAAABZCaAsAAAAAAAAAFkJoCwAAAAAAAAAWQmgLAAAAAAAAABZCaAsAAAAAAAAAFkJoCwAAAAAAAAAWQmgLAAAAeEiPHj1Up04d+fj4KCQkRPfee6/279/v1mbLli3q0KGDfHx8FBYWpmnTpuXrZ9myZWrcuLF8fHzUvHlzffzxx27zDcNQQkKCQkJC5Ovrq5iYGO3YsaNEtw0AAAAXj9AWAAAA8JAuXbrovffe0/bt2/X+++/rl19+0Z133mnOd7lc6tq1q8LDw7Vp0yZNnz5dkyZN0muvvWa2Wb9+vfr06aO4uDh9//33io2NVWxsrLZu3Wq2mTZtmubMmaN58+Zpw4YN8vPzk9Pp1IkTJ0p1ewEAAFA0NsMwDE8PojxyuVxyOBzKyspSQECAp4cDoDQstnl6BOVHX360AeXF5VZTrVixQrGxscrOzlalSpX0yiuvaPz48UpPT5e3t7ckaezYsVq+fLnS0tIkSXfffbeOHTumlStXmv20bdtWLVu21Lx582QYhkJDQzVq1Cg99thjkqSsrCwFBQVpwYIF6t27d5HGdrnta5Q8G6VPqSmp3+o5hqWHZAYoP4paU3GmLQAAAGABR44c0aJFi9SuXTtVqlRJkpSSkqKOHTuaga0kOZ1Obd++XUePHjXbxMTEuPXldDqVkpIiSdq1a5fS09Pd2jgcDkVFRZltAAAAYC2EtgAAAIAHjRkzRn5+fqpRo4b27Nmj//73v+a89PR0BQUFubXPe56enl5omzPnn7lcQW0Kkp2dLZfL5fYAAABA6SC0BQAAAIrR2LFjZbPZCn3kXdpAkh5//HF9//33WrNmjSpUqKD77rtPVriC2dSpU+VwOMxHWFiYp4cEAABQblT09AAAAACAy8moUaM0YMCAQtvUq1fP/H/NmjVVs2ZNXXnllWrSpInCwsL09ddfKzo6WsHBwcrIyHBbNu95cHCw+W9Bbc6cnzctJCTErU3Lli3POcZx48Zp5MiR5nOXy0VwCwAAUEoIbQEAAIBiFBgYqMDAwItaNjc3V9I/lyaQpOjoaI0fP16nTp0yr3OblJSkRo0aqVq1amab5ORkxcfHm/0kJSUpOjpakhQREaHg4GAlJyebIa3L5dKGDRs0ZMiQc47FbrfLbrdf1HYAAADg0nB5BAAAAMADNmzYoBdffFGpqan67bff9Nlnn6lPnz6qX7++Gbj27dtX3t7eiouL07Zt27R06VLNnj3b7QzYRx99VImJiZoxY4bS0tI0adIkbdy4UcOGDZMk2Ww2xcfH6+mnn9aKFSv0ww8/6L777lNoaKhiY2M9sekAAAA4D860BQAAADygcuXK+uCDDzRx4kQdO3ZMISEh6tatmyZMmGCe4epwOLRmzRoNHTpUkZGRqlmzphISEjR48GCzn3bt2mnx4sWaMGGCnnjiCTVs2FDLly9Xs2bNzDajR4/WsWPHNHjwYGVmZqp9+/ZKTEyUj49PqW83AAAAzs9mWOEuB+WQy+WSw+FQVlaWAgICPD0cAKVhsc3TIyg/+vKjDSgvqKlKD/saF8pG6VNqSuq3eo5h6SGZAcqPotZUXB4BAAAAAAAAACyE0BYAAAAAAAAALITQFgAAAAAAAAAshNAWAAAAAAAAACyE0BYAAAAAAAAALITQFgAAAAAAAAAshNAWAAAAAAAAACyE0BYAAAAAAAAALITQFgAAAAAAAAAshNAWAAAAAAAAACyE0BYAAAAAAAAALITQFgAAAAAAAAAshNAWAAAAAAAAACyE0BYAAAAAAAAALITQFgAAAAAAAAAshNAWAAAAAAAAACyE0BYAAAAAAAAALITQFgAAAAAAAAAshNAWAAAAAAAAACyE0BYAAAAAAAAALITQFgAAAAAAAAAshNAWAAAAAAAAACyE0BYAAAAAAAAALITQFgAAAAAAAAAshNAWAAAAAAAAACyE0BYAAAAAAAAALITQFgAAAAAAAAAshNAWAAAAAAAAACyE0BYAAAAAAAAALKTMhLbPPPOM2rVrp8qVK6tq1aoFtrHZbPkeS5YscWvz+eefq3Xr1rLb7WrQoIEWLFiQr5+XXnpJdevWlY+Pj6KiovTNN9+4zT9x4oSGDh2qGjVqyN/fX3fccYcyMjKKa1MBAAAAAAAAlGNlJrQ9efKkevXqpSFDhhTabv78+Tpw4ID5iI2NNeft2rVL3bt3V5cuXZSamqr4+Hg98MADWr16tdlm6dKlGjlypCZOnKjvvvtOV199tZxOpw4ePGi2GTFihD766CMtW7ZM//vf/7R//37dfvvtxb7NAAAAAAAAAMofm2EYhqcHcSEWLFig+Ph4ZWZm5ptns9n04YcfugW1ZxozZoxWrVqlrVu3mtN69+6tzMxMJSYmSpKioqJ07bXX6sUXX5Qk5ebmKiwsTI888ojGjh2rrKwsBQYGavHixbrzzjslSWlpaWrSpIlSUlLUtm3bIm2Hy+WSw+FQVlaWAgICLmAPACizFts8PYLyo2+Z+tEG4BJQU5Ue9jUulI3Sp9SU1G/1HMPSU7aSGQCXoqg1VZk507aohg4dqpo1a6pNmzZ66623dGYmnZKSopiYGLf2TqdTKSkpkv45m3fTpk1ubby8vBQTE2O22bRpk06dOuXWpnHjxqpTp47ZBgAAAAAAAAAuVkVPD6A4TZ48Wddff70qV66sNWvW6OGHH9Zff/2l4cOHS5LS09MVFBTktkxQUJBcLpeOHz+uo0ePKicnp8A2aWlpZh/e3t75rqsbFBSk9PT0c44tOztb2dnZ5nOXy3UpmwoAAAAAAADgMuXRM23Hjh1b4M3DznzkhaVF8eSTT+q6665Tq1atNGbMGI0ePVrTp08vwS0ouqlTp8rhcJiPsLAwTw8JAAAAAAAAgAV59EzbUaNGacCAAYW2qVev3kX3HxUVpSlTpig7O1t2u13BwcHKyMhwa5ORkaGAgAD5+vqqQoUKqlChQoFtgoODJUnBwcE6efKkMjMz3c62PbNNQcaNG6eRI0eaz10uF8EtAAAAAAAAgHw8GtoGBgYqMDCwxPpPTU1VtWrVZLfbJUnR0dH6+OOP3dokJSUpOjpakuTt7a3IyEglJyebNzPLzc1VcnKyhg0bJkmKjIxUpUqVlJycrDvuuEOStH37du3Zs8fspyB2u90cBwAAAAAAAACcS5m5pu2ePXt05MgR7dmzRzk5OUpNTZUkNWjQQP7+/vroo4+UkZGhtm3bysfHR0lJSXr22Wf12GOPmX089NBDevHFFzV69Gjdf//9+uyzz/Tee+9p1apVZpuRI0eqf//+uuaaa9SmTRvNmjVLx44d08CBAyVJDodDcXFxGjlypKpXr66AgAA98sgjio6OVtu2bUt1nwAAAAAAAAC4/JSZ0DYhIUELFy40n7dq1UqStHbtWnXu3FmVKlXSSy+9pBEjRsgwDDVo0EAvvPCCBg0aZC4TERGhVatWacSIEZo9e7Zq166tN954Q06n02xz991369ChQ0pISFB6erpatmypxMREt5uTzZw5U15eXrrjjjuUnZ0tp9Opl19+uRT2AgAAAAAAAIDLnc0wDMPTgyiPXC6XHA6HsrKyFBAQ4OnhACgNi22eHkH50ZcfbUB5QU1VetjXuFA2Sp9SU1K/1XMMSw/JDFB+FLWm8irFMQEAAAAAAAAAzoPQFgAAAAAAAAAshNAWAAAAAAAAACyE0BYAAAAAAAAALITQFgAAAAAAAAAshNAWAAAAAAAAACyE0BYAAAAAAAAALITQFgAAAAAAAAAshNAWAAAAAAAAACyE0BYAAAAAAAAALITQFgAAAAAAAAAshNAWAAAAAAAAACyE0BYAAAAAAAAALITQFgAAAAAAAAAshNAWAAAAAAAAACyE0BYAAAAAAAAALITQFgAAAAAAAAAshNAWAAAAAAAAACyE0BYAAAAAAAAALITQFgAAAAAAAAAshNAWAAAAAAAAACyE0BYAAAAAAAAALITQFgAAAAAAAAAshNAWAAAAAAAAACyE0BYAAAAAAAAALITQFgAAAAAAAAAshNAWAAAAAAAAACyE0BYAAAAAAAAALITQFgAAAAAAAAAshNAWAAAAAAAAACyE0BYAAAAAAAAALITQFgAAAAAAAAAshNAWAAAAAAAAACyE0BYAAAAAAAAALITQFgAAAAAAAAAshNAWAAAAAAAAACyE0BYAAAAAAAAALITQFgAAAAAAAAAshNAWAAAAAAAAACyE0BYAAAAAAAAALITQFgAAAAAAAAAshNAWAAAAAAAAACyE0BYAAAAAAAAALITQFgAAAAAAAAAshNAWAAAAAAAAACyE0BYAAADwsOzsbLVs2VI2m02pqalu87Zs2aIOHTrIx8dHYWFhmjZtWr7lly1bpsaNG8vHx0fNmzfXxx9/7DbfMAwlJCQoJCREvr6+iomJ0Y4dO0pykwAAAHAJCG0BAAAADxs9erRCQ0PzTXe5XOratavCw8O1adMmTZ8+XZMmTdJrr71mtlm/fr369OmjuLg4ff/994qNjVVsbKy2bt1qtpk2bZrmzJmjefPmacOGDfLz85PT6dSJEydKZfsAAABwYQhtAQAAAA/65JNPtGbNGj3//PP55i1atEgnT57UW2+9pauuukq9e/fW8OHD9cILL5htZs+erW7duunxxx9XkyZNNGXKFLVu3VovvviipH/Osp01a5YmTJignj17qkWLFnr77be1f/9+LV++vLQ2EwAAABeA0BYAAADwkIyMDA0aNEjvvPOOKleunG9+SkqKOnbsKG9vb3Oa0+nU9u3bdfToUbNNTEyM23JOp1MpKSmSpF27dik9Pd2tjcPhUFRUlNkGAAAA1kJoCwAAAHiAYRgaMGCAHnroIV1zzTUFtklPT1dQUJDbtLzn6enphbY5c/6ZyxXUpiDZ2dlyuVxuDwAAAJQOQlsAAACgGI0dO1Y2m63QR1pamubOnas///xT48aN8/SQCzR16lQ5HA7zERYW5ukhAQAAlBsVPT0AAAAA4HIyatQoDRgwoNA29erV02effaaUlBTZ7Xa3eddcc4369eunhQsXKjg4WBkZGW7z854HBweb/xbU5sz5edNCQkLc2rRs2fKcYxw3bpxGjhxpPne5XAS3AAAApYTQFgAAAChGgYGBCgwMPG+7OXPm6Omnnzaf79+/X06nU0uXLlVUVJQkKTo6WuPHj9epU6dUqVIlSVJSUpIaNWqkatWqmW2Sk5MVHx9v9pWUlKTo6GhJUkREhIKDg5WcnGyGtC6XSxs2bNCQIUPOOT673Z4vUAYAAEDpILQFAAAAPKBOnTpuz/39/SVJ9evXV+3atSVJffv21VNPPaW4uDiNGTNGW7du1ezZszVz5kxzuUcffVSdOnXSjBkz1L17dy1ZskQbN27Ua6+9Jkmy2WyKj4/X008/rYYNGyoiIkJPPvmkQkNDFRsbWzobCwAAgAtCaAsAAABYlMPh0Jo1azR06FBFRkaqZs2aSkhI0ODBg8027dq10+LFizVhwgQ98cQTatiwoZYvX65mzZqZbUaPHq1jx45p8ODByszMVPv27ZWYmCgfHx9PbBYAAADOw2YYhuHpQZRHLpdLDodDWVlZCggI8PRwAJSGxTZPj6D86MuPNqC8oKYqPexrXCgbpU+pKanf6jmGpYdkBig/ilpTeZXimAAAAAAAAAAA50FoCwAAAAAAAAAWQmgLAAAAAAAAABZCaAsAAAAAAAAAFkJoCwAAAAAAAAAWQmgLAAAAAAAAABZCaAsAAAAAAAAAFkJoCwAAAAAAAAAWQmgLAAAAAAAAABZCaAsAAAAAAAAAFlImQtvdu3crLi5OERER8vX1Vf369TVx4kSdPHnSrd2WLVvUoUMH+fj4KCwsTNOmTcvX17Jly9S4cWP5+PioefPm+vjjj93mG4ahhIQEhYSEyNfXVzExMdqxY4dbmyNHjqhfv34KCAhQ1apVFRcXp7/++qv4NxwAAAAAAABAuVMmQtu0tDTl5ubq1Vdf1bZt2zRz5kzNmzdPTzzxhNnG5XKpa9euCg8P16ZNmzR9+nRNmjRJr732mtlm/fr16tOnj+Li4vT9998rNjZWsbGx2rp1q9lm2rRpmjNnjubNm6cNGzbIz89PTqdTJ06cMNv069dP27ZtU1JSklauXKkvvvhCgwcPLp2dAQAAAAAAAOCyZjMMw/D0IC7G9OnT9corr+jXX3+VJL3yyisaP3680tPT5e3tLUkaO3asli9frrS0NEnS3XffrWPHjmnlypVmP23btlXLli01b948GYah0NBQjRo1So899pgkKSsrS0FBQVqwYIF69+6tn376SU2bNtW3336ra665RpKUmJiom2++Wb///rtCQ0OLNH6XyyWHw6GsrCwFBAQU234BYGGLbZ4eQfnRt0z+aANwEaipSg/7GhfKRulTakrqt3qOYekpm8kMgItR1JqqTJxpW5CsrCxVr17dfJ6SkqKOHTuaga0kOZ1Obd++XUePHjXbxMTEuPXjdDqVkpIiSdq1a5fS09Pd2jgcDkVFRZltUlJSVLVqVTOwlaSYmBh5eXlpw4YN5xxvdna2XC6X2wMAAAAAAAAAzlYmQ9udO3dq7ty5evDBB81p6enpCgoKcmuX9zw9Pb3QNmfOP3O5c7WpVauW2/yKFSuqevXqZpuCTJ06VQ6Hw3yEhYUVeXsBAAAAAAAAlB8eDW3Hjh0rm81W6CPv0gZ59u3bp27duqlXr14aNGiQh0Z+4caNG6esrCzzsXfvXk8PCQAAAAAAAIAFVfTkykeNGqUBAwYU2qZevXrm//fv368uXbqoXbt2bjcYk6Tg4GBlZGS4Tct7HhwcXGibM+fnTQsJCXFr07JlS7PNwYMH3fo4ffq0jhw5Yi5fELvdLrvdXui2AgAAAAAAAIBHz7QNDAxU48aNC33kXaN237596ty5syIjIzV//nx5ebkPPTo6Wl988YVOnTplTktKSlKjRo1UrVo1s01ycrLbcklJSYqOjpYkRUREKDg42K2Ny+XShg0bzDbR0dHKzMzUpk2bzDafffaZcnNzFRUVVYx7BwAAAAAAAEB5VCauaZsX2NapU0fPP/+8Dh06pPT0dLdryPbt21fe3t6Ki4vTtm3btHTpUs2ePVsjR4402zz66KNKTEzUjBkzlJaWpkmTJmnjxo0aNmyYJMlmsyk+Pl5PP/20VqxYoR9++EH33XefQkNDFRsbK0lq0qSJunXrpkGDBumbb77RV199pWHDhql3794KDQ0t1f0CAAAAAAAA4PLj0csjFFVSUpJ27typnTt3qnbt2m7zDMOQJDkcDq1Zs0ZDhw5VZGSkatasqYSEBA0ePNhs265dOy1evFgTJkzQE088oYYNG2r58uVq1qyZ2Wb06NE6duyYBg8erMzMTLVv316JiYny8fEx2yxatEjDhg3TDTfcIC8vL91xxx2aM2dOCe8FAAAAAAAAAOWBzchLPVGqXC6XHA6HsrKyFBAQ4OnhACgNi22eHkH50ZcfbUB5QU1VetjXuFA2Sp9SU1K/1XMMSw/JDFB+FLWmKhOXRwAAAAAAAACA8oLQFgAAAAAAAAAshNAWAAAAAAAAACyE0BYAAAAAAAAALITQFgAAAAAAAAAshNAWAAAAAAAAACyE0BYAAAAAAAAALITQFgAAAAAAAAAshNAWAAAAAAAAACyE0BYAAAAAAAAALITQFgAAAAAAAAAshNAWAAAAAAAAACyE0BYAAAAAAAAALITQFgAAAAAAAAAshNAWAAAAAAAAACyE0BYAAAAAAAAALITQFgAAAAAAAAAshNAWAAAAAAAAACyE0BYAAAAAAAAALITQFgAAAAAAAAAshNAWAAAAAAAAACyE0BYAAAAAAAAALITQFgAAAAAAAAAshNAWAAAAAAAAACyE0BYAAAAAAAAALITQFgAAAAAAAAAshNAWAAAAAAAAACyE0BYAAAAAAAAALITQFgAAAAAAAAAshNAWAAAAAAAAACyE0BYAAAAAAAAALITQFgAAAAAAAAAshNAWAAAAAAAAACyE0BYAAAAAAAAALITQFgAAAAAAAAAshNAWAAAAAAAAACyE0BYAAAAAAAAALITQFgAAAAAAAAAshNAWAAAAAAAAACyE0BYAAAAAAAAALITQFgAAAAAAAAAshNAWAAAAAAAAACyE0BYAAAAAAAAALITQFgAAAAAAAAAshNAWAAAAAAAAACyE0BYAAAAAAAAALITQFgAAAAAAAAAshNAWAAAAAAAAACyE0BYAAAAAAAAALITQFgAAAAAAAAAshNAWAAAAAAAAACyE0BYAAAAAAAAALITQFgAAAAAAAAAshNAWAAAAAAAAACyE0BYAAAAAAAAALITQFgAAAAAAAAAshNAWAAAAAAAAACyE0BYAAAAAAAAALITQFgAAAAAAAAAshNAWAAAAAAAAACyE0BYAAAAAAAAALITQFgAAAAAAAAAshNAWAAAAAAAAACyE0BYAAAAAAAAALITQFgAAAPCQunXrymazuT2ee+45tzZbtmxRhw4d5OPjo7CwME2bNi1fP8uWLVPjxo3l4+Oj5s2b6+OPP3abbxiGEhISFBISIl9fX8XExGjHjh0lum0AAAC4eGUitN29e7fi4uIUEREhX19f1a9fXxMnTtTJkyfd2pxd8NpsNn399ddufRVHQXvkyBH169dPAQEBqlq1quLi4vTXX3+V3A4AAADAZWvy5Mk6cOCA+XjkkUfMeS6XS127dlV4eLg2bdqk6dOna9KkSXrttdfMNuvXr1efPn0UFxen77//XrGxsYqNjdXWrVvNNtOmTdOcOXM0b948bdiwQX5+fnI6nTpx4kSpbisAAACKpkyEtmlpacrNzdWrr76qbdu2aebMmZo3b56eeOKJfG0//fRTt6I3MjLSnFdcBW2/fv20bds2JSUlaeXKlfriiy80ePDgkt0JAAAAuCxVqVJFwcHB5sPPz8+ct2jRIp08eVJvvfWWrrrqKvXu3VvDhw/XCy+8YLaZPXu2unXrpscff1xNmjTRlClT1Lp1a7344ouS/jkpYdasWZowYYJ69uypFi1a6O2339b+/fu1fPny0t5cAAAAFEGZCG27deum+fPnq2vXrqpXr5569Oihxx57TB988EG+tjVq1HAreitVqmTOK46C9qefflJiYqLeeOMNRUVFqX379po7d66WLFmi/fv3l8r+AAAAwOXjueeeU40aNdSqVStNnz5dp0+fNuelpKSoY8eO8vb2Nqc5nU5t375dR48eNdvExMS49el0OpWSkiJJ2rVrl9LT093aOBwORUVFmW0AAABgLWUitC1IVlaWqlevnm96jx49VKtWLbVv314rVqxwm1ccBW1KSoqqVq2qa665xmwTExMjLy8vbdiwodi2DwAAAJe/4cOHa8mSJVq7dq0efPBBPfvssxo9erQ5Pz09XUFBQW7L5D1PT08vtM2Z889crqA2BcnOzpbL5XJ7AAAAoHRU9PQALsbOnTs1d+5cPf/88+Y0f39/zZgxQ9ddd528vLz0/vvvKzY2VsuXL1ePHj0kFU9Bm56erlq1arnNr1ixoqpXr37eojc7O9t8TtELAABweRo7dqz+9a9/Fdrmp59+UuPGjTVy5EhzWosWLeTt7a0HH3xQU6dOld1uL+mhFmrq1Kl66qmnPDoGlG2G4ekR4FJxDAHAczwa2l5IQZtn37596tatm3r16qVBgwaZ02vWrOlW9F577bXav3+/pk+fboa2nkTRC0B9qXoBoDwYNWqUBgwYUGibevXqFTg9KipKp0+f1u7du9WoUSMFBwcrIyPDrU3e8+DgYPPfgtqcOT9vWkhIiFubli1bnnOM48aNc6uvXS6XwsLCCt0uAAAAFA+PhrYXWtDu379fXbp0Ubt27dzumHsuUVFRSkpKMp8XR0EbHBysgwcPuvVx+vRpHTlyxFy+IBS9AAAA5UNgYKACAwMvatnU1FR5eXmZ3+yKjo7W+PHjderUKfNeDUlJSWrUqJGqVatmtklOTlZ8fLzZT1JSkqKjoyVJERERCg4OVnJyslnTulwubdiwQUOGDDnnWOx2u8fP9gUAACivPBraXkhBu2/fPnXp0kWRkZGaP3++vLzOfzne1NRUt/C1OAra6OhoZWZmatOmTYqMjJQkffbZZ8rNzVVUVNQ5x0LRCwAAgDOlpKRow4YN6tKli6pUqaKUlBSNGDFC99xzjxnI9u3bV0899ZTi4uI0ZswYbd26VbNnz9bMmTPNfh599FF16tRJM2bMUPfu3bVkyRJt3LjRPMnBZrMpPj5eTz/9tBo2bKiIiAg9+eSTCg0NVWxsrCc2HQAAAOdRJq5pu2/fPnXu3Fnh4eF6/vnndejQIXNe3tmtCxculLe3t1q1aiVJ+uCDD/TWW2/pjTfeMNsWR0HbpEkTdevWTYMGDdK8efN06tQpDRs2TL1791ZoaGgp7REAAACUdXa7XUuWLNGkSZOUnZ2tiIgIjRgxwu3bWQ6HQ2vWrNHQoUMVGRmpmjVrKiEhQYMHDzbbtGvXTosXL9aECRP0xBNPqGHDhlq+fLmaNWtmthk9erSOHTumwYMHKzMzU+3bt1diYqJ8fHxKdZsBAABQNDbDsP6lxRcsWKCBAwcWOC9v+AsXLtS//vUv/fbbb6pYsaIaN26sxx9/XHfeeadb+2XLlmnChAnavXu3GjZsqGnTpunmm29262/ixIl67bXXzIL25Zdf1pVXXmm2OXLkiIYNG6aPPvpIXl5euuOOOzRnzhz5+/sXeZtcLpccDoeysrIUEBBwIbsDAAAA/x81VelhXwMAAFy6otZUZSK0vRxR9AIAAFw6aqrSw74GAAC4dEWtqc5/YVgAAAAAAAAAQKkhtAUAAAAAAAAACyG0BQAAAAAAAAALIbQFAAAAAAAAAAshtAUAAAAAAAAACyG0BQAAAAAAAAALIbQFAAAAAAAAAAshtAUAAAAAAAAACyG0BQAAAAAAAAALIbQFAAAAAAAAAAshtAUAAAAAAAAACyG0BQAAAAAAAAALIbQFAAAAAAAAAAshtAUAAAAAAAAACyG0BQAAAAAAAAALIbQFAAAAAAAAAAup6OkBlFeGYUiSXC6Xh0cCAABQduXVUnm1FUoO9SsAAMClK2r9SmjrIX/++ackKSwszMMjAQAAKPv+/PNPORwOTw/jskb9CgAAUHzOV7/aDE5L8Ijc3Fzt379fVapUkc1m8/RwLMflciksLEx79+5VQECAp4eDi8AxLPs4hmUfx7Ds4xien2EY+vPPPxUaGiovL678VZKoXwvH+7Xs4xiWfRzDywPHsezjGBauqPUrZ9p6iJeXl2rXru3pYVheQEAAb/AyjmNY9nEMyz6OYdnHMSwcZ9iWDurXouH9WvZxDMs+juHlgeNY9nEMz60o9SunIwAAAAAAAACAhRDaAgAAAAAAAICFENrCkux2uyZOnCi73e7poeAicQzLPo5h2ccxLPs4hkDZwfu17OMYln0cw8sDx7Hs4xgWD25EBgAAAAAAAAAWwpm2AAAAAAAAAGAhhLYAAAAAAAAAYCGEtvA4m82m5cuXF2ufd911l2rXrq21a9fqoYce0tq1a4u1f+By1blzZ8XHxxdrn7Nnz1bVqlU1c+ZMLVmyRBMnTizW/i9Xn3/+uWw2mzIzMz09FADAWahfAeugfrUO6legeBHaws2AAQNks9nyPXbu3OnpoRXZ0aNHtXfvXi1atEhjxoxRWlqarrvuOk8Py2POdUy7det23mXr1q2rWbNmFdtYiru/y82AAQMUGxtbLH1ZaV8vW7ZMq1ev1rp16zRp0iT16dPH00MqVikpKapQoYK6d+/u6aFYTkmEGlZzKZ+xEr/cAMWB+vXyQ/1adlC/lk3Ur+dG/Xp+1K+lp6KnBwDr6datm+bPn+82LTAw0EOjuXDVqlVTSkqKJOmbb77x8GisoaBjWlx3cczJyZHNZpOXV+n9DejkyZPy9vYutfXh0nz55ZeSpA8++MDDIykZb775ph555BG9+eab2r9/v0JDQz09JJSykvyMzcPnHlA46tfLD/UrPIn6FZc76teygTNtkY/dbldwcLDbIy4uLt9fUOPj49W5c2fzeefOnTV8+HCNHj1a1atXV3BwsCZNmuS2zI4dO9SxY0f5+PioadOmSkpKyrf+MWPG6Morr1TlypVVr149Pfnkkzp16pRbm48++kjXXnutfHx8VLNmTd12223mvKNHj+q+++5TtWrVVLlyZd10003asWOH2/JffvmlOnToIF9fX4WFhWn48OE6duyYOf/ll19Ww4YN5ePjo6CgIN15550XuBetpaBjWq1aNRmGoUmTJqlOnTqy2+0KDQ3V8OHDJf1zPH/77TeNGDHC/MubJC1YsEBVq1bVihUr1LRpU9ntdu3Zs6fAryXFxsZqwIABhfY3adIktWzZ0m25WbNmqW7duubzvL/gP/PMMwoNDVWjRo0kSe+8846uueYaValSRcHBwerbt68OHjxY/DvQA873frqYY3f48GH16dNHV1xxhSpXrqzmzZvr3XffLXQcRdnH27Zt0y233KKAgABVqVJFHTp00C+//CJJys3N1eTJk1W7dm3Z7Xa1bNlSiYmJbsvv3btXd911l6pWrarq1aurZ8+e2r17tzn/888/V5s2beTn56eqVavquuuu02+//Xaxu7ZY/fXXX1q6dKmGDBmi7t27a8GCBW7zC/usKurr96uvvlKLFi3k4+Ojtm3bauvWrea8ohzTzp0765FHHlF8fLyqVaumoKAgvf766zp27JgGDhyoKlWqqEGDBvrkk0/cltu6datuuukm+fv7KygoSPfee6/++OMPt34Le43mvYdvu+022Ww2t/f0K6+8ovr168vb21uNGjXSO++8U9Rdbknn+oyV/jlb44033tBtt92mypUrq2HDhlqxYoUkaffu3erSpYukfwIbm83m9pk5bNgwxcfHq2bNmnI6nZLOf1z+/PNP9evXT35+fgoJCdHMmTPzfT5fzp+dKL+oX6lfJepXT6N+3W3Op36lfrU66teygdAWxWrhwoXy8/PThg0bNG3aNE2ePNksbHNzc3X77bfL29tbGzZs0Lx58zRmzJh8fVSpUkULFizQjz/+qNmzZ+v111/XzJkzzfmrVq3Sbbfdpptvvlnff/+9kpOT1aZNG3P+gAEDtHHjRq1YsUIpKSkyDEM333yzWTj/8ssv6tatm+644w5t2bJFS5cu1Zdffqlhw4ZJkjZu3Kjhw4dr8uTJ2r59uxITE9WxY8eS3G0e8/7772vmzJl69dVXtWPHDi1fvlzNmzeX9M9flWvXrq3JkyfrwIEDOnDggLnc33//rX/961964403tG3bNtWqVeu86yqsv6JITk7W9u3blZSUpJUrV0qSTp06pSlTpmjz5s1avny5du/ebf7AuBwU9n66mGN34sQJRUZGatWqVdq6dasGDx6se++9t9Azes63j/ft26eOHTvKbrfrs88+06ZNm3T//ffr9OnTkv65HtiMGTP0/PPPa8uWLXI6nerRo4f5i+ipU6fkdDpVpUoVrVu3Tl999ZX8/f3VrVs3nTx5UqdPn1ZsbKw6deqkLVu2KCUlRYMHDzYLeU9777331LhxYzVq1Ej33HOP3nrrLRmGIen8n1VFff0+/vjjmjFjhr799lsFBgbq1ltvNT/PinpMFy5cqJo1a+qbb77RI488oiFDhqhXr15q166dvvvuO3Xt2lX33nuv/v77b0lSZmamrr/+erVq1UobN25UYmKiMjIydNddd+Xr91yv0W+//VaSNH/+fB04cMB8/uGHH+rRRx/VqFGjtHXrVj344IMaOHDgZX3txqeeekp33XWXtmzZoptvvln9+vXTkSNHFBYWpvfff1+StH37dh04cECzZ882l1u4cKG8vb311Vdfad68eUU6LiNHjtRXX32lFStWKCkpSevWrdN3333nNp7L/bMTuFDUr2UL9au1Ub9Sv0rUr5cD6leLMIAz9O/f36hQoYLh5+dnPu68806jf//+Rs+ePd3aPvroo0anTp3M5506dTLat2/v1ubaa681xowZYxiGYaxevdqoWLGisW/fPnP+J598YkgyPvzww3OOafr06UZkZKT5PDo62ujXr1+BbX/++WdDkvHVV1+Z0/744w/D19fXeO+99wzDMIy4uDhj8ODBbsutW7fO8PLyMo4fP268//77RkBAgOFyuc45prKkoGPq5+dnPPPMM8aMGTOMK6+80jh58mSBy4aHhxszZ850mzZ//nxDkpGamuo2vVOnTsajjz7qNq1nz55G//79C+1v4sSJxtVXX+02bebMmUZ4eLjbNgQFBRnZ2dmFbuu3335rSDL+/PPPQttZ1Znvs/O9ny7m2BWke/fuxqhRo8znBR3HM529j8eNG2dERESccxyhoaHGM888k287Hn74YcMwDOOdd94xGjVqZOTm5przs7OzDV9fX2P16tXG4cOHDUnG559/ft5t8YR27doZs2bNMgzDME6dOmXUrFnTWLt2rWEYhX9WFeTsfbt27VpDkrFkyRKzzeHDhw1fX19j6dKl5+ynoGN65mvp9OnThp+fn3Hvvfea0w4cOGBIMlJSUgzDMIwpU6YYXbt2det37969hiRj+/btBfZrGO6vUcMwCvx8b9eunTFo0CC3ab169TJuvvnmc26TlRX2GWsY/+yDCRMmmO3/+usvQ5LxySefGIbxf8f56NGjbv126tTJaNWqldu08x0Xl8tlVKpUyVi2bJk5PzMz06hcufIFva+Bsob6lfr1TNSvpYv69R/Ur9SvZQn1a9nBmbbIp0uXLkpNTTUfc+bMKfKyLVq0cHseEhJinrL+008/KSwszO16OdHR0fn6WLp0qa677joFBwfL399fEyZM0J49e8z5qampuuGGGwpc/08//aSKFSsqKirKnFajRg01atRIP/30kyRp8+bNWrBggfz9/c2H0+lUbm6udu3apRtvvFHh4eGqV6+e7r33Xi1atMj8611ZdfYxTU1N1UMPPaRevXrp+PHjqlevngYNGqQPP/zQ/AtzYby9vfMd65LWvHnzfNfD2bRpk2699VbVqVNHVapUUadOnSTJ7fVSlhX2frqYY5eTk6MpU6aoefPmql69uvz9/bV69epC99f59nFqaqo6dOigSpUq5VvW5XJp//79+W6kct1117m9H3fu3KkqVaqY78fq1avrxIkT+uWXX1S9enUNGDBATqdTt956q2bPnn3BZ7mUlO3bt+ubb74xb0xRsWJF3X333XrzzTclFf5ZJRX99Xvm52T16tXdPs+KekzPfC1VqFBBNWrUMM9skaSgoCBJMl9fmzdv1tq1a90+Jxs3bixJ5lcHz+5Xcn+NnstPP/1U6GuiLDrXZ2yeM/eTn5+fAgICivR1rsjISLfn5zsuv/76q06dOuV2RozD4TC/kpvncv/sRPlE/Ur9ej7Ur6WD+pX6VaJ+LQuoX8sGbkSGfPz8/NSgQQO3aV5eXuZXJvKcfZ0uSfl+8NlsNuXm5hZ53SkpKerXr5+eeuopOZ1OORwOLVmyRDNmzDDb+Pr6Frm/gvz111968MEHzesnnalOnTry9vbWd999p88//1xr1qxRQkKCJk2apG+//VZVq1a9pHV7SkHHVPrnB+j27dv16aefKikpSQ8//LCmT5+u//3vfwUWMXl8fX3zfb2nqK+RsxV1OT8/P7fnx44dk9PplNPp1KJFixQYGKg9e/bI6XTq5MmT511vWVDY+yksLOyCj9306dM1e/ZszZo1S82bN5efn5/i4+PPub+Kso+L4/0YGRmpRYsW5ZuXdwOZ+fPna/jw4UpMTNTSpUs1YcIEJSUlqW3btpe07kv15ptv6vTp026/yBuGIbvdrhdffLHQfVNcr9+iHtOCXktnTst7P+e9vv766y/deuut+te//pVvnSEhIYX2eyGf+ZeLc33G5rnY/XT25975jsvOnTvP22d5+OxE+UT9Sv1K/WoN1K/Ur+dD/WoN1K9lA2faokgCAwPz/XUwNTX1gvpo0qSJ9u7d69bP119/7dZm/fr1Cg8P1/jx43XNNdeoYcOG+S7Y3qJFCyUnJ59zHadPn9aGDRvMaYcPH9b27dvVtGlTSVLr1q31448/qkGDBvkeeX8Jr1ixomJiYjRt2jRt2bJFu3fv1meffXZB21tW+Pr66tZbb9WcOXP0+eefKyUlRT/88IOkf85IyMnJKVI/Z79GcnJy3C44f67+AgMDlZ6e7lb4FuW1lZaWpsOHD+u5555Thw4d1Lhx43JxIfIzXeix++qrr9SzZ0/dc889uvrqq1WvXj39/PPP5+y/KPu4RYsWWrduXYG/qAQEBCg0NFRfffVVvnGc+X7csWOHatWqle/96HA4zGVatWqlcePGaf369WrWrJkWL158YTurmJ0+fVpvv/22ZsyY4fbX6c2bNys0NFTvvvtuoZ9VF/L6PfNz8ujRo/r555/VpEkTSRd+TIuqdevW2rZtm+rWrZvvuJxdiBWmUqVK+V6HTZo0KfQ1Ud7k/dwpymft+Y5LvXr1VKlSJfP6a5KUlZXl9prgsxPlCfUr9ev5UL+WPupXz6F+LRrq1/Ojfi09hLYokuuvv14bN27U22+/rR07dmjixIn5CprziYmJ0ZVXXqn+/ftr8+bNWrduncaPH+/WpmHDhtqzZ4+WLFmiX375RXPmzNGHH37o1mbixIl69913NXHiRP3000/64YcfzL/aNGzYUD179tSgQYP05ZdfavPmzbrnnnt0xRVXqGfPnpL+ubvv+vXrNWzYMKWmpmrHjh3673//a97IYeXKlZozZ45SU1P122+/6e2331Zubm6+0/PLkuzsbKWnp7s9/vjjDy1YsEBvvvmmtm7dql9//VX//ve/5evrq/DwcEn/3D3ziy++0L59+9zu7liQ66+/XqtWrdKqVauUlpamIUOGKDMz061NQf117txZhw4d0rRp0/TLL7/opZdeyncX0ILknVUyd+5c/frrr1qxYoWmTJlycTuoDLqYY9ewYUMlJSVp/fr1+umnn/Tggw8qIyPjnOsoyj4eNmyYXC6XevfurY0bN2rHjh165513tH37dkn/3ITgX//6l5YuXart27dr7NixSk1N1aOPPipJ6tevn2rWrKmePXtq3bp12rVrlz7//HMNHz5cv//+u3bt2qVx48YpJSVFv/32m9asWaMdO3aYRZ+nrFy5UkePHlVcXJyaNWvm9rjjjjv05ptvFvpZdSGv38mTJys5OVlbt27VgAEDVLNmTfNu6Bd6TItq6NChOnLkiPr06aNvv/1Wv/zyi1avXq2BAwcW+Rdh6Z/XYXJystLT03X06FFJ/7wmFixYoFdeeUU7duzQCy+8oA8++ECPPfbYJY/bU871GVsU4eHhstlsWrlypQ4dOqS//vrrnG3Pd1yqVKmi/v376/HHH9fatWu1bds2xcXFycvLyzwbpbx/dqJ8oX6lfqV+tRbqV+pXifrVKqhfywhPXUwX1lTQDRvyJCQkGEFBQYbD4TBGjBhhDBs2LN+NHM53If/t27cb7du3N7y9vY0rr7zSSExMzHeh78cff9yoUaOG4e/vb9x9993GzJkzDYfD4dbv+++/b7Rs2dKQZHh7exu33367Oe/IkSPGvffeazgcDsPX19dwOp3Gzz//7Lb8N998Y9x4442Gv7+/4efnZ7Ro0cK86Pa6deuMTp06GdWqVTN8fX2NFi1aFHrRdKvr37+/ISnfo1GjRsaHH35oREVFGQEBAYafn5/Rtm1b49NPPzWXTUlJMVq0aGHY7XYj7+Ni/vz5+Y6HYRjGyZMnjSFDhhjVq1c3atWqZUydOjXf8S+oP8MwjFdeecUICwsz/Pz8jPvuu8945pln8t3IoaDX5eLFi426desadrvdiI6ONlasWGFIMr7//vtL3W0ecfaNHAp7P13MsTt8+LDRs2dPw9/f36hVq5YxYcIE47777nPbt2evtyj7ePPmzUbXrl3N11aHDh2MX375xTAMw8jJyTEmTZpkXHHFFUalSpWMq6++2ryAfZ4DBw4Y9913n1GzZk3Dbrcb9erVMwYNGmRkZWUZ6enpRmxsrBESEmJ4e3sb4eHhRkJCgpGTk3NpO/sS3XLLLee88cCGDRsMScbmzZvNzypvb2+jZs2abp9V59u3eRf4/+ijj4yrrrrK8Pb2Ntq0aWNs3rzZ7ONijqlhFHyjj7M/i3/++WfjtttuM6pWrWr4+voajRs3NuLj482bbhTlM3/FihVGgwYNjIoVK7q9p19++WWjXr16RqVK/6+9+wtp6v/jOP46URhOiIXQQga7sIHoJkZJ/24EwxWNFG9KCAZ1YRk1MEKEKCwSK0ckWdDF+ntVaQRWNC1IrKDEwILdFKuLDAqiMStrer4Xv99vP/az+f1B3+93Z/P5gHNxztn5+D5HGC/efPY5i0y3221evnz51w86B8z1HWuav36ZxZIlS8xwOJza7+joMB0Oh2kYRur5ZXqpyp/9X+LxuNnU1GQWFhaaDofDDIVCZnV1tdnW1pYaI9++OwHyK/mV/Jo95FfyK/k195Bfc4dhmv+zGA+QQ548eaLe3l5duXIl26UA814ikVBNTY0eP34855pyAP45k5OTKikpUXd3t3bu3JntcgCI/ApYCfkVsB7y63/xIjLkrGg0qmQyqdu3b2e7FGDei8ViSiaT+vjxo16+fKmqqqpslwTMS2NjY4pGo6qurtaXL1/U0dEhSamfWAPILvIrYB3kV8AayK+ZsaYtclZLS4s2btyopqambJcCzHsXL15UeXm5HA6H3G53tssB5rVTp06psrJStbW1mpyc1PDwsIqLi7NdFgCRXwErIb8C1kF+/TWWRwAAAAAAAAAAC2GmLQAAAAAAAABYCE1bAAAAAAAAALAQmrYAAAAAAAAAYCE0bQEAAAAAAADAQmjaAgAAAAAAAICF0LQFAAAAAAAAAAuhaQsAeSAQCMgwjFmbz+eTJBmGoVu3bmW3SAAAAODfyK8AMLeF2S4AAPDX8Pl8CofDaccKCgqyVA0AAAAwN/IrAGTGTFsAyBMFBQVyOBxpm91ul8vlkiQ1NDTIMIzU/uvXr7V161YtW7ZMRUVFWr16tQYHB9PGdLlcOnr0qLZv3y6bzaaSkhKdPXs27TOhUEgej0c2m01Op1N79uxRIpFInX/79q38fr/sdrtsNpvKy8t1586dv/VZAAAAwPrIrwCQGU1bAMhzz549kySFw2FNTEyk9hOJhDZv3qyhoSGNjY3J5/PJ7/fr3bt3adefPHlSlZWVGhsbU1tbm/bv369IJJI6v2DBAp05c0avXr3SpUuX9ODBAx08eDB1vqWlRVNTU3r06JHGx8fV1dWloqKif+DOAQAAkIvIrwAgGaZpmtkuAgDwewKBgK5evarFixenHW9vb1d7e7sMw1B/f7/q6+vnHKeiokLNzc3au3evpH/NVCgrK9Pdu3dTn9m2bZvi8XjG2QY3btxQc3OzPn36JEnyer1qbGzU4cOHf+MOAQAAkE/IrwAwN9a0BYA8UVNTo3PnzqUdW7p0acbPJxIJHTlyRAMDA5qYmFAymdS3b99mzVRYu3btrP3Tp0+n9gcHB9XZ2aloNKp4PK5kMqnv37/r69evKiws1L59+7R7927dv39ftbW1amxslNfr/f0bBgAAQE4jvwJAZiyPAAB5wmazqbS0NG2bK/QeOHBA/f39On78uIaHh/XixQt5PB79+PHj//6bsVhMW7Zskdfr1c2bNzU6OppaM+w/4+zatUtv3rzRjh07ND4+rlWrVqmnp+f3bhYAAAA5j/wKAJnRtAWAeWDRokWanp5OOzYyMqJAIKCGhgZ5PB45HA7FYrFZ1z59+nTWfllZmSRpdHRUMzMz6u7u1po1a+R2u/X+/ftZYzidTjU3N6uvr0+tra26cOHCX3dzAAAAyDvkVwDzHcsjAECemJqa0ocPH9KOLVy4UMXFxXK5XBoaGtL69etVUFAgu92uFStWqK+vT36/X4Zh6NChQ5qZmZk17sjIiE6cOKH6+npFIhFdv35dAwMDkqTS0lL9/PlTPT098vv9GhkZ0fnz59OuDwaD2rRpk9xutz5//qyHDx+mQjMAAADmL/IrAGTGTFsAyBP37t3T8uXL07YNGzZIkrq7uxWJROR0OlVVVSVJCoVCstvtWrdunfx+v+rq6rRy5cpZ47a2tur58+eqqqrSsWPHFAqFVFdXJ0mqrKxUKBRSV1eXKioqdO3aNXV2dqZdPz09rZaWFpWVlcnn88ntdqu3t/dvfhoAAACwOvIrAGRmmKZpZrsIAIA1uVwuBYNBBYPBbJcCAAAA/CnyK4B8wUxbAAAAAAAAALAQmrYAAAAAAAAAYCEsjwAAAAAAAAAAFsJMWwAAAAAAAACwEJq2AAAAAAAAAGAhNG0BAAAAAAAAwEJo2gIAAAAAAACAhdC0BQAAAAAAAAALoWkLAAAAAAAAABZC0xYAAAAAAAAALISmLQAAAAAAAABYCE1bAAAAAAAAALCQPwCPDC0xgxlFhgAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Gráficos para CV e SV\n", "fig, ax = plt.subplots(1, 2, figsize=(14, 6))\n", "\n", "# Gráfico CV\n", "ax[0].bar(df['Etapa'], df['CV'], color='orange')\n", "ax[0].set_title('Variação de Custo (CV)')\n", "ax[0].set_xlabel('Etapas')\n", "ax[0].set_ylabel('R$')\n", "\n", "# Gráfico SV\n", "ax[1].bar(df['Etapa'], df['SV'], color='blue')\n", "ax[1].set_title('Variação de Cronograma (SV)')\n", "ax[1].set_xlabel('Etapas')\n", "ax[1].set_ylabel('R$')\n", "\n", "plt.tight_layout()\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Interpretação dos Resultados\n", "Abaixo estão as interpretações para cada etapa do projeto com base nos indicadores:" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Etapa: Fundações\n", " - CPI: 0.91 (Ineficiente)\n", " - SPI: 1.00 (No Prazo)\n", "\n", "Etapa: Estrutura\n", " - CPI: 1.04 (Eficiente)\n", " - SPI: 0.97 (Atrasado)\n", "\n", "Etapa: Instalações\n", " - CPI: 0.79 (Ineficiente)\n", " - SPI: 0.95 (Atrasado)\n", "\n", "Etapa: Acabamento\n", " - CPI: 1.07 (Eficiente)\n", " - SPI: 1.00 (No Prazo)\n", "\n", "Etapa: Entrega\n", " - CPI: 0.80 (Ineficiente)\n", " - SPI: 1.00 (No Prazo)\n", "\n" ] } ], "source": [ "for _, row in df.iterrows():\n", " print(f\"Etapa: {row['Etapa']}\")\n", " print(f\" - CPI: {row['CPI']:.2f} {'(Eficiente)' if row['CPI'] >= 1 else '(Ineficiente)'}\")\n", " print(f\" - SPI: {row['SPI']:.2f} {'(No Prazo)' if row['SPI'] >= 1 else '(Atrasado)'}\")\n", " print()" ] } ], "metadata": { "kernelspec": { "display_name": "jupyterbook", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.13.0" } }, "nbformat": 4, "nbformat_minor": 5 }